Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Journal of Southern Medical University ; (12): 425-431, 2022.
Article in Chinese | WPRIM | ID: wpr-936333

ABSTRACT

OBJECTIVE@#To construct a luciferase reporter gene vector carrying human nuclear factor of activated T cells 2 (NFATc2) gene promoter and examine the effects of metformin and lipopolysaccharide (LPS) on the transcriptional activity of NFATc2 gene.@*METHODS@#The promoter sequence of human NFATc2 gene was acquired from UCSC website for PCR amplification. NFATc2 promoter fragment was inserted into pGL3-basic plasmid double cleaved with Kpn Ⅰ and Hind Ⅲ. The resultant recombinant plasmid pGL3-NFATC2-promoter was co-transfected with the internal reference plasmid pRL-TK in 293F cells, and luciferase activity in the cells was detected. Reporter gene vectors of human NFATc2 gene promoter with different fragment lengths were also constructed and assayed for luciferase activity. The changes in transcription activity of NFATc2 gene were assessed after treatment with different concentrations of metformin and LPS for 24 h. We also examined the effect of mutation in RUNX2-binding site in NFATC2 gene promoter on the regulatory effects of metformin and LPS on NFATc2 transcription.@*RESULTS@#We successfully constructed pGL3-NFATc2-promoter plasmids carrying different lengths (2170 bp, 2077 bp, 1802 bp, 1651 bp, 1083 bp, 323 bp) of NFATc2 promoter sequences as verified by enzymatic digestion and sequencing. Transfection of 293F cells with the plasmid carrying a 1651 bp NFATc2 promoter (pGL3-1651 bp) resulted in the highest transcriptional activity of NFATc2 gene, and the luciferase activity was approximately 3.3 times that of pGL3-2170 bp (1.843 ± 0.146 vs 0.547 ± 0.085). Moderate (5 mmol/L) and high (10 mmol/L) concentrations of metformin significantly upregulated the transcriptional activity of pGL3-1651 bp by up to 2.5 and 3 folds, respectively. LPS at different doses also upregulated the transcriptional activity of pGL3-1651 bp by at least 1.6 folds. The mutation in the RUNX2 binding site on pGL3-1651 bp obviously reduced metformin- and LPS-induced enhancement of pGL3-1651bp transcription by 1.7 and 2 folds, respectively.@*CONCLUSION@#pGL3-NFATc2-promoter can be transcribed and activated in 293F cells, and LPS and metformin can activate the transcription of pGL3- NFATc2-promoter in a RUNX2-dependent manner.


Subject(s)
Humans , Core Binding Factor Alpha 1 Subunit/genetics , Lipopolysaccharides/pharmacology , Luciferases/genetics , Metformin/pharmacology , NFATC Transcription Factors/genetics , Promoter Regions, Genetic , T-Lymphocytes , Transcription, Genetic/drug effects , Transfection
2.
Mem. Inst. Oswaldo Cruz ; 113(11): e180267, 2018. graf
Article in English | LILACS | ID: biblio-1040585

ABSTRACT

The Bacille Calmette-Guérin (BCG) vaccine comprises a family of genetically different strains derived by the loss of genomic regions (RDs) and other mutations. In BCG Moreau, loss of RD16 inactivates rv3405c * , encoding a transcriptional repressor that negatively regulates the expression of Rv3406, an alkyl sulfatase. To evaluate the impact of this loss on the BCG and host cell viability and the cytokine profile, THP-1 cells were infected with BCG Moreau (harbouring the empty vector) and a complemented strain carrying a functional copy of rv3405c. Viability of the host cells and bacteria as well as the pattern of cytokine secretion were evaluated. Our results show that the viability of BCG Moreau is higher than that of the complemented strain in an axenic medium, suggesting a possible functional gain associated with the constitutive expression of Rv3406. Viability of the host cells did not vary significantly between recombinant strains, but differences in the profiles of the cytokine secretion (IL-1β and IL-6) were observed. Our results suggest an example of a functional gain due to gene loss contributing to the elucidation of the impact of RD16 on the physiology of BCG Moreau.


Subject(s)
Humans , Transcription, Genetic/genetics , BCG Vaccine/pharmacology , Cell Survival/genetics , Cytokines/drug effects , Gain of Function Mutation/genetics , Macrophages/microbiology , Mycobacterium bovis/genetics , Time Factors , Transcription, Genetic/drug effects , Tumor Cells, Cultured/drug effects , Tumor Cells, Cultured/microbiology , BCG Vaccine/genetics , Cell Survival/drug effects , Cytokines/genetics , Gain of Function Mutation/drug effects , Mycobacterium bovis/physiology
3.
Braz. j. med. biol. res ; 48(4): 321-331, 4/2015. graf
Article in English | LILACS | ID: lil-744363

ABSTRACT

It is currently accepted that superoxide anion (O2•−) is an important mediator in pain and inflammation. The role of superoxide anion in pain and inflammation has been mainly determined indirectly by modulating its production and inactivation. Direct evidence using potassium superoxide (KO2), a superoxide anion donor, demonstrated that it induced thermal hyperalgesia, as assessed by the Hargreaves method. However, it remains to be determined whether KO2 is capable of inducing other inflammatory and nociceptive responses attributed to superoxide anion. Therefore, in the present study, we investigated the nociceptive and inflammatory effects of KO2. The KO2-induced inflammatory responses evaluated in mice were: mechanical hyperalgesia (electronic version of von Frey filaments), thermal hyperalgesia (hot plate), edema (caliper rule), myeloperoxidase activity (colorimetric assay), overt pain-like behaviors (flinches, time spent licking and writhing score), leukocyte recruitment, oxidative stress, and cyclooxygenase-2 mRNA expression (quantitative PCR). Administration of KO2 induced mechanical hyperalgesia, thermal hyperalgesia, paw edema, leukocyte recruitment, the writhing response, paw flinching, and paw licking in a dose-dependent manner. KO2 also induced time-dependent cyclooxygenase-2 mRNA expression in the paw skin. The nociceptive, inflammatory, and oxidative stress components of KO2-induced responses were responsive to morphine (analgesic opioid), quercetin (antioxidant flavonoid), and/or celecoxib (anti-inflammatory cyclooxygenase-2 inhibitor) treatment. In conclusion, the well-established superoxide anion donor KO2 is a valuable tool for studying the mechanisms and pharmacological susceptibilities of superoxide anion-triggered nociceptive and inflammatory responses ranging from mechanical and thermal hyperalgesia to overt pain-like behaviors, edema, and leukocyte recruitment.


Subject(s)
Animals , Male , Mice , /drug effects , Hyperalgesia/chemically induced , Inflammation/chemically induced , Nociceptive Pain/chemically induced , Superoxides/pharmacology , Analgesics, Opioid/therapeutic use , Antioxidants/therapeutic use , /therapeutic use , /genetics , Edema/chemically induced , Hindlimb , Hot Temperature , Hyperalgesia/drug therapy , Inflammation/drug therapy , Nociceptive Pain/drug therapy , Pain Measurement/methods , Peroxidase/drug effects , Real-Time Polymerase Chain Reaction , Reactive Oxygen Species/metabolism , Skin/drug effects , Time Factors , Transcription, Genetic/drug effects
4.
Rev. latinoam. enferm ; 22(6): 1034-1040, 16/12/2014. tab, graf
Article in English | LILACS, BDENF | ID: lil-732956

ABSTRACT

OBJECTIVES: to identify the number of electro-medical pieces of equipment in a coronary care unit, characterize their types, and analyze implications for the safety of patients from the perspective of alarm fatigue. METHOD: this quantitative, observational, descriptive, non-participatory study was conducted in a coronary care unit of a cardiology hospital with 170 beds. RESULTS: a total of 426 alarms were recorded in 40 hours of observation: 227 were triggered by multi-parametric monitors and 199 were triggered by other equipment (infusion pumps, dialysis pumps, mechanical ventilators, and intra-aortic balloons); that is an average of 10.6 alarms per hour. CONCLUSION: the results reinforce the importance of properly configuring physiological variables, the volume and parameters of alarms of multi-parametric monitors within the routine of intensive care units. The alarms of equipment intended to protect patients have increased noise within the unit, the level of distraction and interruptions in the workflow, leading to a false sense of security. .


OBJETIVOS: identificar o número de alarmes dos equipamentos eletromédicos numa unidade coronariana, caracterizar o tipo e analisar as implicações para a segurança do paciente na perspectiva da fadiga de alarmes. MÉTODO: trata-se de estudo quantitativo observacional descritivo, não participante, desenvolvido numa unidade coronariana de um hospital de cardiologia, com capacidade para 170 leitos. RESULTADOS: registrou-se o total de 426 sinais de alarmes, sendo 227 disparados por monitores multiparamétricos e 199 alarmes disparados por outros equipamentos (bombas infusoras, hemodiálise, ventiladores mecânicos e balão intra-aórtico), nas 40h, numa média total de 10,6 alarmes/hora. CONCLUSÃO: os resultados encontrados reforçam a importância da configuração de variáveis fisiológicas, do volume e dos parâmetros de alarmes dos monitores multiparamétricos à rotina das unidades de terapia intensiva. Os alarmes dos equipamentos destinados a proteger os pacientes têm conduzido ao aumento do ruído na unidade, à fadiga de alarmes, a distrações e interrupções no fluxo de trabalho e à falsa sensação de segurança. .


OBJETIVOS: identificar el número de alarmas de los equipamientos electromédicos en una unidad coronariana, caracterizar el tipo y analizar las implicaciones para la seguridad del paciente en la perspectiva de fatiga de alarmas. MÉTODO: se trata de un estudio cuantitativo, observacional, descriptivo, no participante, desarrollado en una unidad coronariana de un hospital de cardiología, con capacidad de 170 camas. RESULTADOS: se registró un total de 426 señales de alarmas, siendo 227 disparadas por monitores multiparamétricos y 199 disparadas por otros equipamientos (bombas de infusión, hemodiálisis, ventiladores mecánicos y balón intraaórtico), durante 40h, con un promedio total de 10,6 alarmas/hora. CONCLUSIÓN: los resultados encontrados refuerzan la importancia de la configuración de las variables fisiológicas, del volumen y de los parámetros de alarma de los monitores multiparamétricos, a la rutina de las unidades de terapia intensiva. Las alarmas de los equipamientos destinados a proteger a los pacientes, han llevado al aumento del ruido en la unidad, a la fatiga de alarmas, a las distracciones e interrupciones en el flujo de trabajo y a una falsa sensación de seguridad. .


Subject(s)
Humans , DNA-Directed RNA Polymerases/metabolism , Oncogene Proteins, Viral/genetics , RNA Polymerase III/metabolism , Sarcosine/analogs & derivatives , Transcription Factors, TFIII , Transcription, Genetic , Transcription Factors/metabolism , Adenovirus Early Proteins , Detergents , DNA-Binding Proteins/genetics , HeLa Cells , Kinetics , Sarcosine/pharmacology , Transcription Factor TFIIIB , Transcription Factors/genetics , Transcription, Genetic/drug effects
5.
Braz. dent. j ; 25(6): 461-465, Nov-Dec/2014. tab, graf
Article in English | LILACS | ID: lil-732256

ABSTRACT

The objective of this study was to evaluate the cellular proliferative potential of oral lichen planus (OLP) lesions from patients without hepatitis C virus (HCV) by means of AgNOR method, as well as the cellular proliferative potential of the normal oral mucosa from patients with HCV, treated or untreated by interferon and ribavirin. A cross-sectional study was developed to investigate four groups: 10 HCV+ patients without clinical signs of OLP who had never been treated for HCV infection - Group 1; 10 HCV+ patients that were under interferon and ribavirin treatment - Group 2; 15 patients with reticular OLP lesions histopathologically confirmed, without HCV - Group 3; and 15 blood donors without HCV infection and no clinical signs of OLP GROUP 4 Control Group. The cytological material of all groups was collected by the liquid-based cytology technique. Then, the sedimented material from each patient was filled with the Nucleolar Organizer Regions impregnation by silver method (AgNOR). The count of NORs was performed on 100 epithelial cell nuclei per patient using the Image Tool(tm) software. The Tukey HSD test was used to compare the median value of NORs among the groups and showed that the oral mucosa of HCV+ patients previously treated with anti-HCV drugs (GROUP 2), presented a higher average number of NORs in relation to others (p<0.05). The anti-HCV treatment may be related to increased cell proliferation of oral mucosa, indicating a possible relationship between OLP and HCV+ patients treated with interferon and ribavirin.


O propósito deste estudo foi avaliar o potencial proliferativo celular das lesões de líquen plano bucal (LPB) de pacientes sem vírus da hepatite C (VHC) por meio do método AgNOR, comparando-o ao potencial proliferativo celular da mucosa bucal normal de portadores de VHC, tratados ou não com interferon e ribavirina. Um estudo transversal foi realizado para investigar 4 grupos: 10 pacientes VHC+ sem sinais clínicos de LPB que nunca haviam sido tratados para a infecção por VHC - Grupo 1; 10 pacientes VHC+ que estavam sob tratamento com interferon e ribavirina - Grupo 2; 15 pacientes com LPB reticular histopatologicamente confirmado, sem VHC - Grupo 3; e 15 doadores de sangue sem infecção por VHC e sem sinais clínicos de LPB (Grupo 4 - Grupo de Controle). O material celular de todos os grupos foi coletado pela técnica da citologia em base líquida. Então, o material sedimentado de cada paciente foi submetido ao método da impregnação das regiões organizadoras nucleolares pela prata (AgNOR). A contagem das NORs foi realizada em 100 núcleos celulares epiteliais por paciente por meio do programa Image Tool(r). O teste Tukey HSD foi utilizado para comparar o valor médio de NORs entre os grupos e mostrou que a mucosa bucal dos pacientes VHC+ previamente tratados com fármacos anti-VHC (Grupo 2) apresentou maior número médio de NORs por núcleo em relação aos outros (p<0,05). O tratamento anti-VHC pode estar relacionado ao aumento da atividade proliferativa celular da mucosa bucal, aventando uma possível relação entre LPB e pacientes VHC+ tratados com interferon e ribavirina.


Subject(s)
Animals , Cattle , Humans , Rats , Genes , RNA Polymerase II/metabolism , Transcription Factors, General , Transcription, Genetic , Transcriptional Elongation Factors , Transcription Factors/metabolism , Cell Nucleus/metabolism , Detergents/pharmacology , Genes/drug effects , HeLa Cells/metabolism , Heparin/pharmacology , Histones/genetics , Liver/metabolism , Plasmids , Promoter Regions, Genetic , Sarcosine/analogs & derivatives , Sarcosine/pharmacology , Templates, Genetic , Thymus Gland/enzymology , Transcription Factors/isolation & purification , Transcription, Genetic/drug effects
6.
Braz. j. med. biol. res ; 47(8): 646-654, 08/2014. tab, graf
Article in English | LILACS | ID: lil-716273

ABSTRACT

The physiological mechanisms involved in isoproterenol (ISO)-induced chronic heart failure (CHF) are not fully understood. In this study, we investigated local changes in cardiac aldosterone and its synthase in rats with ISO-induced CHF, and evaluated the effects of treatment with recombinant human brain natriuretic peptide (rhBNP). Sprague-Dawley rats were divided into 4 different groups. Fifty rats received subcutaneous ISO injections to induce CHF and the control group (n=10) received equal volumes of saline. After establishing the rat model, 9 CHF rats received no further treatment, rats in the low-dose group (n=8) received 22.5 μg/kg rhBNP and those in the high-dose group (n=8) received 45 μg/kg rhBNP daily for 1 month. Cardiac function was assessed by echocardiographic and hemodynamic analysis. Collagen volume fraction (CVF) was determined. Plasma and myocardial aldosterone concentrations were determined using radioimmunoassay. Myocardial aldosterone synthase (CYP11B2) was detected by quantitative real-time PCR. Cardiac function was significantly lower in the CHF group than in the control group (P<0.01), whereas CVF, plasma and myocardial aldosterone, and CYP11B2 transcription were significantly higher than in the control group (P<0.05). Low and high doses of rhBNP significantly improved hemodynamics (P<0.01) and cardiac function (P<0.05) and reduced CVF, plasma and myocardial aldosterone, and CYP11B2 transcription (P<0.05). There were no significant differences between the rhBNP dose groups (P>0.05). Elevated cardiac aldosterone and upregulation of aldosterone synthase expression were detected in rats with ISO-induced CHF. Administration of rhBNP improved hemodynamics and ventricular remodeling and reduced myocardial fibrosis, possibly by downregulating CYP11B2 transcription and reducing myocardial aldosterone synthesis.


Subject(s)
Animals , Humans , Male , Aldosterone/blood , /metabolism , Heart Failure/drug therapy , Myocardium/metabolism , Natriuretic Agents/therapeutic use , Natriuretic Peptide, Brain/therapeutic use , Aldosterone/genetics , Cardiotonic Agents , Chronic Disease , Collagen/analysis , Disease Models, Animal , Echocardiography , Fibrosis/etiology , Heart Failure/chemically induced , Heart Failure/metabolism , Hemodynamics/drug effects , Isoproterenol , Long-Term Care , Myocardium/pathology , Natriuretic Agents/administration & dosage , Natriuretic Peptide, Brain/administration & dosage , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Recombinant Proteins/therapeutic use , Transcription, Genetic/drug effects , Ventricular Remodeling/drug effects
7.
Indian J Exp Biol ; 2014 Jun; 52(6): 579-588
Article in English | IMSEAR | ID: sea-153736

ABSTRACT

The interaction of a newly synthesized antitumor complex cis-dichloro-1,2-propylenediamine-N,N,N',N'-tetraacetato ruthenium (III) (RAP) with DNA was investigated in vitro through a number of techniques including comet assay, immunoprecipitation, and immunolocalization of certain nucleolar proteins (the upstream binding factor (UBF) and fibrillarin) involved in DNA transcription, rRNA processing, and ribosomal assembly. The results showed that RAP binds to the DNA of two cell lines (H4 and Hs-683) causing a delay in cell proliferation rate leading to a number of cellular modifications. These modifications include DNA-damage assessed by the single cell gel electrophoresis method (comet assay) and variation in the expression of nucleolar proteins; UBF was more abundant in RAP treated cells, this was explained by the high affinity of this protein to DNA modified by RAP. On the other hand, fibrillarin was found in less quantities in RAP treated cells which was explained by a de-regulation of the ribosomal machinery caused by RAP.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Line, Tumor , DNA Damage , Drug Evaluation, Preclinical , Humans , Nuclear Proteins/metabolism , Organometallic Compounds/pharmacology , Protein Transport/drug effects , RNA Processing, Post-Transcriptional/drug effects , Tissue Distribution/drug effects , Transcription, Genetic/drug effects
8.
Indian J Biochem Biophys ; 2013 Dec; 50(6): 548-553
Article in English | IMSEAR | ID: sea-154211

ABSTRACT

The fresh water unicellular alga Haematococcus pluvialis is a promising natural source of astaxanthin. The present study investigated the transcriptional expression of carotenoid genes for astaxanthin accumulation in H. pluvialis using real-time fluorescence quantitative PCR (qRT-PCR). With treatments of 20 and 40 mg/L of gibberllin A3 (GA3), five genes ipi-1, ipi-2, psy, pds and bkt2 were up-regulated with different expression profiles. GA20 (20 mg/L of GA3) treatment had a greater effect on transcriptional expression of bkt2 than on ipi-1 ipi-2, psy and pds (>4-fold up-regulation). However, GA40 (40 mg/L of GA3) induced more transcriptional expression of ipi-2, psy and bkt2 than both ipi-1 and pds. The expression of lyc, crtR-B and crtO for astaxanthin biosynthesis was not affected by GA3 in H. piuvialis. In the presence of GA3, astaxanthin biosynthesis genes of ipi-1, pds and bkt2 were up-regulated at transcriptional level, psy at post-transcriptional level, whereas ipi-2 was up-regulated at both levels. The study could potentially lead to a scale application of exogenous GA3 in astaxanthin production with H. pluvialis just like GAs perform in increasing crops production and it would provide new insight about the multifunctional roles of carotenogenesis in response to GA3.


Subject(s)
Carotenoids/genetics , Dose-Response Relationship, Drug , Fresh Water , Gene Expression Regulation, Plant/drug effects , Gibberellins/pharmacology , Plant Growth Regulators/pharmacology , Transcription, Genetic/drug effects , Volvocida/drug effects , Volvocida/genetics , Volvocida/metabolism , Xanthophylls/metabolism
9.
Braz. j. med. biol. res ; 46(8): 696-699, ago. 2013. graf
Article in English | LILACS | ID: lil-684534

ABSTRACT

We investigated the effect of fish oil (FO) supplementation on tumor growth, cyclooxygenase 2 (COX-2), peroxisome proliferator-activated receptor gamma (PPARγ), and RelA gene and protein expression in Walker 256 tumor-bearing rats. Male Wistar rats (70 days old) were fed with regular chow (group W) or chow supplemented with 1 g/kg body weight FO daily (group WFO) until they reached 100 days of age. Both groups were then inoculated with a suspension of Walker 256 ascitic tumor cells (3×107 cells/mL). After 14 days the rats were killed, total RNA was isolated from the tumor tissue, and relative mRNA expression was measured using the 2-ΔΔCT method. FO significantly decreased tumor growth (W=13.18±1.58 vs WFO=5.40±0.88 g, P<0.05). FO supplementation also resulted in a significant decrease in COX-2 (W=100.1±1.62 vs WFO=59.39±5.53, P<0.001) and PPARγ (W=100.4±1.04 vs WFO=88.22±1.46, P<0.05) protein expression. Relative mRNA expression was W=1.06±0.022 vs WFO=0.31±0.04 (P<0.001) for COX-2, W=1.08±0.02 vs WFO=0.52±0.08 (P<0.001) for PPARγ, and W=1.04±0.02 vs WFO=0.82±0.04 (P<0.05) for RelA. FO reduced tumor growth by attenuating inflammatory gene expression associated with carcinogenesis.


Subject(s)
Animals , Male , /genetics , Cell Proliferation/drug effects , /genetics , Fish Oils/pharmacology , PPAR gamma/genetics , Transcription Factor RelA/genetics , /metabolism , Dietary Supplements , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Fish Oils/chemistry , Growth Inhibitors/pharmacology , Immunoblotting , Rats, Wistar , Real-Time Polymerase Chain Reaction , Transcription, Genetic/drug effects
10.
Braz. j. microbiol ; 44(2): 649-655, 2013. ilus, tab
Article in English | LILACS | ID: lil-688596

ABSTRACT

This study aims at evaluating the effects of Zataria multiflora (Z. multiflora) essential oil (EO) on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes. Total RNAs of Aspergillus parasiticus (A.parasiticus) ATCC56775 grown in yeast extract sucrose (YES) broth medium treated with Z. multiflora EO were subjected to reverse transcription-polymerase chain reaction (RT-PCR). Specific primers of nor-1, ver-1, omt-A and aflR genes were used. In parallel mycelial dry weight of samples were measured and all the media were assayed by high-pressure liquid chromatography (HPLC) for aflatoxinB1 (AFB1), aflatoxinB2 (AFB2), aflatoxinG1 (AFG1), aflatoxinG2 (AFG2) and aflatoxin total (AFTotal) production. The results showed that mycelial dry weight and aflatoxin production reduce in the presence of Z. multiflora EO (100 ppm) on day 5 of growth. It was found that the expression of nor-1, ver-1, omt-A and aflR genes was correlated with the ability of fungus to produce aflatoxins on day 5 in YES medium. RT-PCR showed that in the presence of Z.multiflora EO (100 ppm) nor-1, ver-1 and omtA genes expression was reduced. It seems that toxin production inhibitory effects of Z. multiflora EO on day 5 may be at the transcription level and this herb may cause reduction in aflatoxin biosynthesis pathway genes activity.


Subject(s)
Aflatoxins/biosynthesis , Antifungal Agents/metabolism , Aspergillus/drug effects , Biosynthetic Pathways/drug effects , Lamiaceae/chemistry , Oils, Volatile/metabolism , Transcription, Genetic/drug effects , Antifungal Agents/isolation & purification , Aspergillus/genetics , Aspergillus/growth & development , Aspergillus/metabolism , Biosynthetic Pathways/genetics , Chromatography, High Pressure Liquid , Gene Expression Profiling , Oils, Volatile/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction
11.
Journal of Korean Medical Science ; : 1238-1243, 2013.
Article in English | WPRIM | ID: wpr-173129

ABSTRACT

Amiloride and benzamil showed antinocicepitve effects in several pain models through the inhibition of acid sensing ion channels (ASICs). However, their role in neuropathic pain has not been investigated. In this study, we investigated the effect of the intrathecal amiloride and benzamil in neuropathic pain model, and also examined the role of ASICs on modulation of neuropathic pain. Neuropathic pain was induced by L4-5 spinal nerve ligation in male Sprague-Dawley rats weighing 100-120 g, and intrathecal catheterization was performed for drug administration. The effects of amiloride and benzamil were measured by the paw-withdrawal threshold to a mechanical stimulus using the up and down method. The expression of ASICs in the spinal cord dorsal horn was also analyzed by RT-PCR. Intrathecal amiloride and benzamil significantly increased the paw withdrawal threshold in spinal nerve-ligated rats (87%+/-12% and 76%+/-14%, P=0.007 and 0.012 vs vehicle, respectively). Spinal nerve ligation increased the expression of ASIC3 in the spinal cord dorsal horn (P=0.01), and this increase was inhibited by both amiloride and benzamil (P<0.001 in both). In conclusion, intrathecal amiloride and benzamil display antinociceptive effects in the rat spinal nerve ligation model suggesting they may present an alternative pharmacological tool in the management of neuropathic pain at the spinal level.


Subject(s)
Animals , Male , Rats , Acid Sensing Ion Channels/genetics , Amiloride/analogs & derivatives , Analgesics/pharmacology , Disease Models, Animal , Neuralgia/drug therapy , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Spinal Cord/metabolism , Transcription, Genetic/drug effects
12.
Journal of Korean Medical Science ; : 803-810, 2012.
Article in English | WPRIM | ID: wpr-210924

ABSTRACT

The balance between tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor type 1 (PAI-1) regulates fibrinolysis. PAI-1 expression increases in atherosclerotic arteries and vascular smooth muscle cells (VSMCs) are one of major constituents of atheroma. We investigated the impact of lysophosphatidylcholine (lysoPC), an active component of oxidized low-density lipoprotein, on the plasminogen activator system of the rat VSMCs. The lysoPC stimulated the protein and gene expressions of PAI-1 but did not affect the protein expression of t-PA. Fibrin overlay zymography revealed that lysoPC increased the activity of PAI-1 in the conditioned media, while concurrently decreasing that of free t-PA. Vitamin E inhibited the lysoPC-induced PAI-1 expression. Further, lysoPC increased the intracellular reactive oxygen species (ROS) formation. Caffeic acid phenethyl ester, an inhibitor of NF-kappaB, blocked this lysoPC effect. Indeed, lysoPC induced the NF-kappaB-mediated transcriptional activity as measured by luciferase reporter assay. In addition, genistein, an inhibitor of protein-tyrosine kinase (PTK), diminished the lysoPC effect, while 7,12-dimethylbenz[a]anthracene, a stimulator of PTK, stimulated PAI-1 production. In conclusion, lysoPC does not affect t-PA expression but induces PAI-1 expression in the VSMC by mediating NF-kappaB and the genistein-sensitive PTK signaling pathways via oxidative stress. Importantly, lysoPC stimulates the enzyme activity of PAI-1 and suppresses that of t-PA.


Subject(s)
Animals , Rats , Benz(a)Anthracenes/pharmacology , Caffeic Acids/pharmacology , Cells, Cultured , Genistein/pharmacology , Lipoproteins, LDL/metabolism , Lysophosphatidylcholines/pharmacology , Muscle, Smooth, Vascular/cytology , NF-kappa B/antagonists & inhibitors , Oxidative Stress/drug effects , Phenylethyl Alcohol/analogs & derivatives , Plasminogen Activator Inhibitor 1/agonists , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Tissue Plasminogen Activator/metabolism , Transcription, Genetic/drug effects , Up-Regulation/drug effects , Vitamin E/pharmacology
13.
Journal of Korean Medical Science ; : 1489-1494, 2011.
Article in English | WPRIM | ID: wpr-82227

ABSTRACT

Natural isoflavones and flavones are important dietary factors for prostate cancer prevention. We investigated the molecular mechanism of these compounds (genistein, biochanin-A and apigenin) in PC-3 (hormone-independent/p53 mutant type) and LNCaP (hormone-dependent/p53 wild type) prostate cancer cells. A cell growth rate and apoptotic activities were analyzed in different concentrations and exposure time to evaluate the antitumor activities of genistein, biochanin-A and apigenin. The real time PCR and Western blot analysis were performed to investigate whether the molecular mechanism of these compounds are involving the p21 and PLK-1 pathway. Apoptosis of prostate cancer cells was associated with p21 up-regulation and PLK-1 suppression. Exposure of genistein, biochanin-A and apigenin on LNCaP and PC-3 prostate cancer cells resulted in same pattern of cell cycle arrest and apoptosis. The inhibition effect for cell proliferation was slightly greater in LNCaP than PC-3 cells. In conclusion, flavonoids treatment induces up-regulation of p21 expression, and p21 inhibits transcription of PLK-1, which promotes apoptosis of cancer cells.


Subject(s)
Humans , Male , Antineoplastic Agents/pharmacology , Apigenin/pharmacology , Apoptosis , Cell Cycle/drug effects , Cell Cycle Proteins/biosynthesis , Cell Line, Tumor , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p21/biosynthesis , Flavonoids/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Genistein/pharmacology , Prostatic Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/biosynthesis , Proto-Oncogene Proteins/biosynthesis , Transcription, Genetic/drug effects
14.
Experimental & Molecular Medicine ; : 143-154, 2010.
Article in English | WPRIM | ID: wpr-81940

ABSTRACT

TNF-alpha is a major cytokine involved in inflammatory bowel disease (IBD). In this study, water extract of Grifola frondosa (GFW) was evaluated for its protective effects against colon inflammation through the modulation of TNF-alpha action. In coculture of HT-29 human colon cancer cells with U937 human monocytic cells, TNF-alpha-induced monocyte adhesion to HT-29 cells was significantly suppressed by GFW (10, 50, 100 microg/ml). The reduced adhesion by GFW correlated with the suppressed expression of MCP-1 and IL-8, the major IBD-associated chemokines. In addition, treatment with GFW significantly suppressed TNF-alpha-induced reactive oxygen species production and NF-kappaB transcriptional activity in HT-29 cells. In differentiated U937 monocytic cells, LPS-induced TNF-alpha production, which is known to be mediated through NF-kappaB activation, was significantly suppressed by GFW. In an in vivo rat model of IBD, oral administration of GFW for 5 days (1 g/kg per day) significantly inhibited the trinitrobenzene sulfonic acid (TNBS)-induced weight loss, colon ulceration, myeloperoxidase activity, and TNF-alpha expression in the colon tissue. Moreover, the effect of GFW was similar to that of intra-peritoneal injection of 5-aminosalicylic acid (5-ASA), an active metabolite of sulfasalazine, commonly used drug for the treatment of IBD. The results suggest that GFW ameliorates colon inflammation by suppressing production of TNF-alpha as well as its signaling through NF-kappaB leading to the expression of inflammatory chemokines, MCP-1 and IL-8. Taken together, the results strongly suggest GFW is a valuable medicinal food for IBD treatment, and thus may be used as an alternative medicine for IBD.


Subject(s)
Animals , Humans , Rats , Cell Adhesion/drug effects , Cell Extracts/administration & dosage , Chemokine CCL2/biosynthesis , Coculture Techniques , Colon/drug effects , Grifola , HT29 Cells , Inflammatory Bowel Diseases/chemically induced , Interleukin-8/biosynthesis , Intestinal Mucosa/drug effects , Monocytes/drug effects , NF-kappa B/genetics , Peroxidase/metabolism , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Stomach Ulcer , Transcription, Genetic/drug effects , Trinitrobenzenesulfonic Acid/administration & dosage , Tumor Necrosis Factor-alpha/biosynthesis , U937 Cells , Weight Loss
15.
Experimental & Molecular Medicine ; : 195-204, 2010.
Article in English | WPRIM | ID: wpr-203593

ABSTRACT

Chromatin structure has a crucial role in a diversity of physiological processes, including development, differentiation and stress responses, via regulation of transcription, DNA replication and DNA damage repair. Histone deacetylase (HDAC) inhibitors regulate chromatin structure and activate the DNA damage checkpoint pathway involving Ataxia-telangiectasia mutated (ATM). Herein, we investigated the impact of histone acetylation/deacetylation modification on the ATM-mediated transcriptional modulation to provide a better understanding of the transcriptional function of ATM. The prototype HDAC inhibitor trichostain A (TSA) reprograms expression of the myeloid cell leukemia-1 (MCL1) and Gadd45alpha genes via the ATM-mediated signal pathway. Transcription of MCL1 and Gadd45alpha is enhanced following TSA treatment in ATM+ cells, but not in isogenic ATM- or kinase-dead ATM expressing cells, in the ATM-activated E2F1 or BRCA1-dependent manner, respectively. These findings suggest that ATM and its kinase activity are essential for the TSA-induced regulation of gene expression. In summary, ATM controls the transcriptional upregulation of MCL1 and Gadd45alpha through the activation of the ATM-mediated signal pathway in response to HDAC inhibition. These findings are important in helping to design combinatory treatment schedules for anticancer radio- or chemo-therapy with HDAC inhibitors.


Subject(s)
Humans , Cell Cycle Proteins/genetics , DNA Damage/genetics , DNA-Binding Proteins/metabolism , E2F1 Transcription Factor/metabolism , Gene Expression Regulation/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Hydroxamic Acids/pharmacology , Nuclear Proteins/genetics , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , RNA, Messenger/genetics , Transcription, Genetic/drug effects , Tumor Suppressor Proteins/metabolism
16.
Experimental & Molecular Medicine ; : 555-564, 2010.
Article in English | WPRIM | ID: wpr-200110

ABSTRACT

Rebamipide a gastroprotective drug, is clinically used for the treatment of gastric ulcers and gastritis, but its actions on gastric cancer are not clearly understood. Phospholipase D (PLD) is overexpressed in various types of cancer tissues and has been implicated as a critical factor in inflammation and carcinogenesis. However, whether rebamipide is involved in the regulation of PLD in gastric cancer cells is not known. In this study, we showed that rebamipide significantly suppressed the expression of both PLD1 and PLD2 at a transcriptional level in AGS and MKN-1 gastric cancer cells. Downregulation of PLD expression by rebamipide inhibited its enzymatic activity. In addition, rebamipide inhibited the transactivation of nuclear factor kappa B (NFkappaB), which increased PLD1 expression. Rebamipide or PLD knockdown significantly suppressed the expression of genes involved in inflammation and proliferation and inhibited the proliferation of gastric cancer cells. In conclusion, rebamipide-induced downregulation of PLD may contribute to the inhibition of inflammation and proliferation in gastric cancer.


Subject(s)
Humans , Alanine/analogs & derivatives , Cell Line, Tumor , Cell Proliferation/drug effects , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Inflammation/enzymology , Isoenzymes/genetics , NF-kappa B/metabolism , Phospholipase D/genetics , Promoter Regions, Genetic/genetics , Quinolones/pharmacology , Stomach Neoplasms/enzymology , Transcription, Genetic/drug effects
17.
Braz. j. med. biol. res ; 41(7): 579-582, July 2008. ilus, graf
Article in English | LILACS | ID: lil-489525

ABSTRACT

Most breast cancer risk factors are associated with prolonged exposure of the mammary gland to high levels of estrogens. The actions of estrogens are predominantly mediated by two receptors, ERá and ERâ, which act as transcription factors binding with high affinity to estrogen response elements in the promoter region of target genes. However, most target genes do not contain the consensus estrogen response elements, but rather degenerated palindromic sequences showing one or more mutations and other ER-binding sites such as AP-1 and SP-1. Using the differential display reverse transcription-polymerase chain reaction technique, our group identified several genes differentially expressed in normal tissue and in ER-positive and ER-negative primary breast tumors. One of the genes shown to be down-regulated in breast tumors compared to normal breast tissue was the PHLDA1 (Pleckstrin homology-like domain, family A, member 1). In the present study, we investigated the potential of PHLDA1 to be regulated by estrogen via ER in MCF-7 breast cancer cells. The promoter region of PHLDA1 shows an imperfect palindrome, an AP-1- and three SP-1-binding sites potentially regulated by estrogens. We also assessed the effects of 17â-estradiol on PHLDA1 mRNA expression in MCF-7 breast cancer cells. MCF-7 cells exposed to 10 nM 17â-estradiol showed more than 2-fold increased expression of the PHLDA1 transcripts compared to control cells (P = 0.05). The anti-estrogen ICI 182,780 (1 µM) inhibited PHLDA1 mRNA expression and completely abolished the effect of 10 nM 17â-estradiol on PHLDA1 expression (P < 0.05), suggesting that PHLDA1 is regulated by estrogen via ER.


Subject(s)
Female , Humans , Breast Neoplasms/metabolism , Estradiol/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Receptors, Estrogen/metabolism , Transcription Factors/drug effects , Breast Neoplasms/genetics , Cell Line, Tumor/drug effects , Gene Expression Regulation, Neoplastic/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/genetics , Transcription, Genetic/drug effects , Up-Regulation
18.
Experimental & Molecular Medicine ; : 208-219, 2008.
Article in English | WPRIM | ID: wpr-52234

ABSTRACT

Kaempferol is the major flavonol in green tea and exhibits many biomedically useful properties such as antioxidative, cytoprotective and anti-apoptotic activities. To elucidate its effects on the skin, we investigated the transcriptional profiles of kaempferol-treated HaCaT cells using cDNA microarray analysis and identified 147 transcripts that exhibited significant changes in expression. Of these, 18 were up-regulated and 129 were down-regulated. These transcripts were then classified into 12 categories according to their functional roles: cell adhesion/cytoskeleton, cell cycle, redox homeostasis, immune/defense responses, metabolism, protein biosynthesis/modification, intracellular transport, RNA processing, DNA modification/ replication, regulation of transcription, signal transduction and transport. We then analyzed the promoter sequences of differentially-regulated genes and identified over-represented regulatory sites and candidate transcription factors (TFs) for gene regulation by kaempferol. These included c-REL, SAP-1, Ahr-ARNT, Nrf-2, Elk-1, SPI-B, NF-kappaB and p65. In addition, we validated the microarray results and promoter analyses using conventional methods such as real-time PCR and ELISA-based transcription factor assay. Our microarray analysis has provided useful information for determining the genetic regulatory network affected by kaempferol, and this approach will be useful for elucidating gene-phytochemical interactions.


Subject(s)
Humans , Base Sequence , Cell Line , DNA Primers , Enzyme-Linked Immunosorbent Assay , Gene Expression Profiling , Gene Expression Regulation/drug effects , Kaempferols/pharmacology , Keratinocytes/drug effects , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/physiology , Transcription, Genetic/drug effects
19.
Clinics ; 63(3): 321-328, 2008. ilus, graf
Article in English | LILACS | ID: lil-484775

ABSTRACT

OBJECTIVE: The objective of this study was to determine the effect of nonspecific phosphodiesterase inhibition on transcription factor activation and tumor necrosis factor-alpha (TNF-a) production in lipopolysaccharide (LPS)-stimulated human mononuclear cells. INTRODUCTION: The production of TNF-a following LPS stimulation is one of the key steps in bacterial sepsis and inflammation. The mechanism by which phosphodiesterase inhibition alters TNF-a production in the presence of LPS remains unclear. METHODS: Human mononuclear cells were stimulated with LPS (1 µg/mL), in the presence and absence of Pentoxifylline (PTX; 20 mM), a nonspecific phosphodiesterase inhibitor. Western blotting of phosphorylated cytoplasmic I-kBa, nuclear factor-kB p65 (NF-kB), and nuclear cAMP-response element binding protein (CREB) was performed. DNA binding of NF-kB and CREB was verified by electrophoretic mobility shift assay. TNF-a levels were determined in the supernatant of stimulated cells in the presence and absence Protein kinase A inhibition by an enzyme-linked immunosorbent assay (ELISA). RESULTS: PTX was demonstrated to significantly reduce cytoplasmic I-kBa phosphorylation, nuclear p65 phosphorylation, and the DNA binding activity of NF-kB. In contrast, PTX markedly enhanced the phosphorylation and DNA binding activity of CREB. Cells concomitantly treated with PTX and LPS secreted similar levels of TNF-a in the presence and absence Protein kinase A inhibition. DISCUSSION: The increased level of cAMP that results from phosphodiesterase inhibition affects cytoplasmic and nuclear events, resulting in the attenuation of NF-kB and the activation of CREB transcriptional DNA binding through pathways that are partially Protein kinase A-independent. CONCLUSION: PTX-mediated phosphodiesterase inhibition occurs partially through a Protein kinase A-independent pathway and may serve as a useful tool in the attenuation of LPS-induced inflammation.


Subject(s)
Humans , Leukocytes, Mononuclear/drug effects , NF-kappa B/drug effects , Pentoxifylline/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Tumor Necrosis Factor-alpha/biosynthesis , Blotting, Western , Cyclic AMP Response Element-Binding Protein/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Electrophoretic Mobility Shift Assay , Enzyme-Linked Immunosorbent Assay , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Phosphorylation/drug effects , Sepsis/drug therapy , Transcription, Genetic/drug effects
20.
Braz. j. med. biol. res ; 40(1): 33-39, Jan. 2007. ilus
Article in English | LILACS | ID: lil-439671

ABSTRACT

No fully effective treatment has been developed since the discovery of Chagas' disease by Carlos Chagas in 1909. Since drug-resistant Trypanosoma cruzi strains are occurring and the current therapy is effectiveness in the acute phase but with various adverse side effects, more studies are needed to characterize the susceptibility of T. cruzi to new drugs. Many natural and/or synthetic substances showing trypanocidal activity have been used, even though they are not likely to be turned into clinically approved drugs. Originally, drug screening was performed using natural products, with only limited knowledge of the molecular mechanism involved in the development of diseases. Trans-splicing, which is unusual RNA processing reaction and occurs in nematodes and trypanosomes, implies the processing of polycistronic transcription units into individual mRNAs; a short transcript spliced leader (SL RNA) is trans-spliced to the acceptor pre-mRNA, giving origin to the mature mRNA. In the present study, permeable cells of T. cruzi epimastigote forms (Y, BOL and NCS strains) were treated to evaluate the interference of two drugs (hydroxymethylnitrofurazone - NFOH-121 and nitrofurazone) in the trans-splicing reaction using silver-stained PAGE analysis. Both drugs induced a significant reduction in RNA processing at concentrations from 5 to 12.5 æM. These data agreed with the biological findings, since the number of parasites decreased, especially with NFOH-121. This proposed methodology allows a rapid and cost-effective screening strategy for detecting drug interference in the trans-splicing mechanism of T. cruzi.


Subject(s)
Animals , Nitrofurazone/analogs & derivatives , Nitrofurazone/pharmacology , RNA, Messenger/drug effects , RNA, Protozoan/drug effects , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/genetics , Cell Membrane Permeability/drug effects , Electrophoresis, Polyacrylamide Gel , RNA Splicing/drug effects , Time Factors , Transcription, Genetic/drug effects , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL